Information-Sensitive Inventory Management when Records are Inaccurate

Adam Mersereau
Kenan-Flagler Business School
University of North Carolina
ajm@unc.edu

University of Florida ISOM/ISE Workshop
February 15, 2008
Nicole DeHoratius, Adam Mersereau, & Linus Schrage.
Retail Inventory Management when Records are Inaccurate.
Forthcoming in *M&SOM*.

Adam Mersereau.
Information-Sensitive Replenishment when Inventory Records are Inaccurate.
Nearly finished.
Retail Inventory Record Inaccuracy

- **Inventory record inaccuracy**: Discrepancy between recorded inventory and what is actually on a retailer’s shelf.

- **Causes** (*DeHoratius and Raman, 2007*)
 - Customer theft
 - Shoplifting
 - Damage to merchandise
 - Replenishment errors
 - Imperfect audits
 - Etc.
Data from Gamma (DeHoratius and Raman, 2007)
What to do?

1. **Prevention:** Reduce incidence of record inaccuracy.
 - Process quality and conformance.
 - Improved tracking technology (e.g., RFID)

2. **Correction:** Perform inventory audits.

3. **Integration:** Accept there is record inaccuracy and use decision tools that account for it.
How does record inaccuracy impact optimal replenishment in a lost sales environment?

Talk Outline:

1. Managing Record Inaccuracy using a Bayesian Inventory Record
2. Optimal Inventory Policies for Short Horizons
3. An Approximate POMDP Algorithm for Longer Horizons
4. Summary and Research Directions
Related Work

Inventory Management with Record Inaccuracy
- Kang and Gershwin (2005)
- Kök and Shang (2007)
- Lee and Özer (2007)
- Bensoussan, Cakanyildirim, Sethi (2007)

Inventory Management with Demand Learning
- Lariviere and Porteus (1999)
- Ding, Puterman, Bisi (2002)
- Chen and Plambeck (2007)
- Lu, Song, Zhu (2007)
Assumptions

- Single SKU.
- Periodic review.
- Unobserved lost sales.
- Perfect replenishment process with lead time 0.
- Unobserved daily inventory perturbation: “invisible” demand.
- Arbitrary (discrete) demand distributions.
- Customer demands and “invisible” demands independent.
Daily Sequence of Events

0. Initial inventory I_{t-1}.
1. Replenishment R_t arrives.
2. Demand D_t arrives, observe sales $S_t = \min\{D_t, I_{t-1} + R_t\}$.
3. Place replenishment order R_{t+1}.

Information state $\phi_t = \{I_0, R_0, \ldots, R_t, S_0, \ldots, S_t\}$.

Inventory dynamics:
- Physical inventory: $I_t = I_{t-1} + R_t - S_t$.
- Recorded inventory: $J_t = J_{t-1} + R_t - S_t$.
Daily Sequence of Events

0. Initial inventory I_{t-1}.
1. Replenishment R_t arrives.
2. Demand D_t arrives, observe sales $S_t = \min\{D_t, I_{t-1} + R_t\}$.

3. Place replenishment order R_{t+1}.

Information state $\phi_t = \{I_0, R_0, \ldots, R_t, S_0, \ldots, S_t\}$.

Inventory dynamics:
- Physical inventory: $I_t = I_{t-1} + R_t - S_t$.
- Recorded inventory: $J_t = J_{t-1} + R_t - S_t$.

Adam Mersereau
Information-Sensitive Inventory Management 10
Daily Sequence of Events

1. Initial inventory I_{t-1}.
2. Replenishment R_t arrives.
3. Demand D_t arrives, observe sales $S_t = \min\{D_t, I_{t-1} + R_t\}$.
4. Invisible demand V_t arrives, unobserved invisible “sales” $U_t = \min\{V_t, I_{t-1} + R_t - S_t\}$.
5. Place replenishment order R_{t+1}.

Information state $\phi_t = \{I_0, R_0, \ldots, R_t, S_0, \ldots, S_t\}$.

Inventory dynamics:
- Physical inventory: $I_t = I_{t-1} + R_t - S_t - U_t$.
- Recorded inventory: $J_t = J_{t-1} + R_t - S_t$.
Illustrated Daily Sequence of Events

- Physical inventory:

\[I_{t-1} \rightarrow R_t \rightarrow I_t \]

- Recorded inventory:

\[J_{t-1} \rightarrow R_t \rightarrow J_t \]

- Bayesian inventory record (BIR):

\[P_{t-1} \rightarrow R_t \rightarrow P_t \]
Bayesian Inventory Record (BIR)

- Maintain a probabilistic belief of inventory level, updated using Bayes rule.
 \[P_t(i) \equiv \Pr \{ I_t = i | \phi_t \} \]

- Bayesian updating reflects:
 - If see no sales, then actual inventory might be zero.
 - If see sales, then actual inventory could not have been zero.
Updating $P_t(\cdot)$: An Example

| $\Pr (I_{t-1} + R_t)$ | S_t | $\Pr (I_{t-1} + R_t|S_t)$ | $P_t(\cdot) = \Pr (I_t)$ |
|------------------------|-------|-----------------------------|-----------------------------|
| ![Histogram](image1) | 0 | ![Histogram](image2) | ![Histogram](image3) |
| ![Histogram](image4) | 1 | ![Histogram](image5) | ![Histogram](image6) |
| ![Histogram](image7) | 2 | ![Histogram](image8) | ![Histogram](image9) |
| ![Histogram](image10) | 3 | ![Histogram](image11) | ![Histogram](image12) |

$(D_t \sim \text{NegBin}(1.0, 0.5), V_t$ difference of two Poissons with means 0.2.)
Critical fractile-based myopic replenishment heuristic.

Audit heuristic based on Expected Value of Perfect Information (EVPI).

Methods for calibrating model parameters using retailer audit data.

Proof that $P_t(\cdot)$-based policies avoid persistent “freezing.”

Simulation study with sensitivity analysis.
Sales/Inventory Tradeoff

<table>
<thead>
<tr>
<th>Observed in-stock probability</th>
<th>Average physical inventory held</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.86</td>
<td>Full</td>
</tr>
<tr>
<td>0.88</td>
<td>Bayes</td>
</tr>
<tr>
<td>0.9</td>
<td>Naive</td>
</tr>
<tr>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Target CF = 99%

(—– approx. 90% confidence intervals —–)

Adam Mersereau
Information-Sensitive Inventory Management
How does record inaccuracy impact optimal replenishment in a lost sales environment?

Optimal decisions

- Require solving partially observed Markov decision problem (POMDP) with belief state $P_t(\cdot)$.
- Intractable due to “curse of dimensionality.”

Our approach

- Characterize replenishment for a two-period special case.
- Numerically examine an approximate POMDP policy for more general problems.
Effects of Record Inaccuracy on Replenishment

Myopic and forward-looking replenishment:

Uncertainty effect: *Stock more* to buffer additional uncertainty brought by record inaccuracy.

Direct Loss effect: *Stock less* so there is less to lose through theft and damage.

Forward-looking replenishment:

Persistent Inventory effect: *Stock less* to reduce the possibility of carrying too much inventory into next period.

Information effect: *Stock less* to improve information in BIR.

- Perishable goods with unknown demand distribution, unobserved lost sales.
- Forward-looking policy stocks more than myopic policy.
- **Information effect:** Stock more to reduce stockouts, see better demand data.
Inspiration: Replenishment with Demand Learning

- Perishable goods with unknown demand distribution, unobserved lost sales.
- Forward-looking policy stocks more than myopic policy.
- **Information effect:** Stock more to reduce stockouts, see better demand data.

Chen and Plambeck (2007), Lu, Song, and Zhu (2007)

- Non-perishable goods with unknown demand distribution, unobserved lost sales.
- **Persistent Inventory effect:** Stock more may become stock less to avoid carrying too much inventory into next period.
Initial stock I_0.
One-period Problem

0. Initial stock I_0.

1. Place initial order R_0.

 \rightarrow cost c per unit.
One-period Problem

0 Initial stock I_0.

1 Place initial order R_0.
 \[\rightarrow \text{cost} \ c \ \text{per unit}. \]

2 Demand D_0 arrives, yielding visible sales S_0.
 \[\rightarrow \text{cost} \ p \ \text{per unit unsatisfied}. \]
One-period Problem

0. Initial stock I_0.

1. Place initial order R_0.
 \[\rightarrow \text{cost } c \text{ per unit.} \]

2. Demand D_0 arrives, yielding visible sales S_0.
 \[\rightarrow \text{cost } p \text{ per unit unsatisfied.} \]

3. Salvage
 \[\rightarrow \text{value } (c - h) \text{ per unit left over.} \]
One-period Problem

If \(I_0 = i_0 \) known, order
\[
R_{0,1}^{noV}(\delta_{i_0}) = \min \left\{ R_0 \geq 0 : \Pi_{R_0+i_0} \geq \frac{p-c}{p+h-c} \right\}, \text{ where } D_0 \sim \Pi.
\]

If \(I_0 \) is unknown with distribution \(P_0 \), order
\[
R_{0,1}^{noV}(P_0) = \min \left\{ R_0 \geq 0 : W_{R_0} \geq \frac{p-c}{p+h-c} \right\}, \text{ where } D_0 - I_0 \sim W.
\]

When \(E[I_0|P_0] = i_0 \), expect \(R_{0,1}^{noV}(P_0) \geq R_{0,1}^{noV}(\delta_{i_0}) \) for \(\frac{p-c}{p+h-c} \) sufficiently large.
One-period Problem

If $I_0 = i_0$ known, order
$$R_{0,1}^{\text{noV}}(\delta_{i_0}) = \min \left\{ R_0 \geq 0 : \Pi_{R_0+i_0} \geq \frac{p-c}{p+h-c} \right\}, \text{ where } D_0 \sim \Pi.$$

If I_0 is unknown with distribution P_0, order
$$R_{0,1}^{\text{noV}}(P_0) = \min \left\{ R_0 \geq 0 : W_{R_0} \geq \frac{p-c}{p+h-c} \right\}, \text{ where } D_0 - I_0 \sim W.$$

When $E[I_0|P_0] = i_0$, expect $R_{0,1}^{\text{noV}}(P_0) \geq R_{0,1}^{\text{noV}}(\delta_{i_0})$ for $\frac{p-c}{p+h-c}$ sufficiently large.

Uncertainty Effect
With I_0 uncertainty, stock more to buffer added uncertainty.
One-period Problem with Invisible Demand

0. Initial stock I_0.

1. Place initial order R_0.
 → cost c per unit.

2. Demand D_0 arrives, yielding visible sales S_0.
 → cost p per unit unsatisfied.

3. Invisible demand V_0, yielding invisible “sales” U_0.

4. Salvage
 → value $(c - h)$ per unit left over.

Theorem: Optimal order $R_{0,1}^*(P_0) \leq R_{0,1}^{noV}(P_0)$ for any P_0, assuming $c - h \geq 0$.

Direct Loss Effect

With invisible demand, stock less so there is less to lose to shrinkage.
One-period Problem with Invisible Demand

0. Initial stock I_0.

1. Place initial order R_0.
 \[\rightarrow\] cost c per unit.

2. Demand D_0 arrives, yielding visible sales S_0.
 \[\rightarrow\] cost p per unit unsatisfied.

3. Invisible demand V_0, yielding invisible “sales” U_0.

4. Salvage
 \[\rightarrow\] value $(c - h)$ per unit left over.

Theorem: Optimal order $R_{0,1}^*(P_0) \leq R_{0,1}^{noV}(P_0)$ for any P_0, assuming $c - h \geq 0$.

Direct Loss Effect

With invisible demand, *stock less* so there is less to lose to shrinkage.
Two-period Problem

0 Initial stock I_0.

1 Place initial order R_0.
 \rightarrow cost c per unit.

2 Demand D_0 arrives, yielding visible sales S_0.
 \rightarrow cost p per unit unsatisfied.

3 Invisible demand V_0, yielding invisible “sales” U_0.

4 Salvage
 \rightarrow value $(c - h)$ per unit left over.
Two-period Problem

0 Initial stock I_0.

1 Place initial order R_0.
 \rightarrow cost c per unit.

2 Demand D_0 arrives, yielding visible sales S_0.
 \rightarrow cost p per unit unsatisfied.

3 Invisible demand V_0, yielding invisible “sales” U_0.

6 Salvage
 \rightarrow value $(c - h)$ per unit left over.
Two-period Problem

0 Initial stock I_0.

1 Place initial order R_0.
 \rightarrow cost c per unit.

2 Demand D_0 arrives, yielding visible sales S_0.
 \rightarrow cost p per unit unsatisfied.

3 Invisible demand V_0, yielding invisible “sales” U_0.
 \rightarrow cost h per unit left over.

4 Place replenishment order R_1.
 \rightarrow cost c per unit.

5 Demand D_1 arrives, yielding visible sales S_1.
 \rightarrow cost p per unit unsatisfied.

6 Salvage
 \rightarrow value $(c - h)$ per unit left over.

(Myopic decision optimal when I_0 known and no V_0.)
Two-period Problem

0. Initial stock I_0.

1. Place initial order R_0.
 \[\rightarrow \text{cost } c \text{ per unit.} \]

2. Demand D_0 arrives, yielding visible sales S_0.
 \[\rightarrow \text{cost } p \text{ per unit unsatisfied.} \]

3. Invisible demand V_0, yielding invisible "sales" U_0.
 \[\rightarrow \text{cost } h \text{ per unit left over.} \]

4. Place replenishment order R_1.
 \[\rightarrow \text{cost } c \text{ per unit.} \]

5. Demand D_1 arrives, yielding visible sales S_1.
 \[\rightarrow \text{cost } p \text{ per unit unsatisfied.} \]

6. Salvage
 \[\rightarrow \text{value } (c - h) \text{ per unit left over.} \]

(Myopic decision optimal when I_0 known and no V_0.)
Let $R_{0,2}^*(\delta_{i_0}) =$ optimal initial replenishment in 2-period problem with $I_0 = i_0$ known.

Proposition: $R_{0,2}^*(\delta_{i_0}) \leq R_{0,1}^*(\delta_{i_0})$

- \exists examples where inequality is strict.
- Relies on I_0 known.
- Proof sketch:
 - Conditional on D_0, suppose $R_0 \rightarrow R_1$.
 Then $R_0 + 1 \rightarrow R_1 - 1$ or $R_0 + 1 \rightarrow R_1$.
 - Characterize period 1 cost difference by considering these two cases.
 - Show period 1 cost non-decreasing as a function of R_0.
Let $R_{0,2}^{\text{perish}}(\delta_{i_0}) = \text{optimal initial replenishment if we allow } R_1 \text{ negative}. \text{ Can show}$

$$R^*_0,2(\delta_{i_0}) \leq R_{0,2}^{\text{perish}}(\delta_{i_0}) \leq R^*_0,1(\delta_{i_0})$$
Let $R_{0,2}^{\text{perish}}(\delta_{i_0}) = \text{optimal initial replenishment if we allow } R_1 \text{ negative. Can show}$

$$R_{0,2}^*(\delta_{i_0}) \leq R_{0,2}^{\text{perish}}(\delta_{i_0}) \leq R_{0,1}^*(\delta_{i_0})$$
Intuition

Let \(R_{0,2}^{perish}(\delta_{i_0}) \) = optimal initial replenishment if we allow \(R_1 \) negative. Can show

\[
\underbrace{R_{0,2}^*(\delta_{i_0}) \leq R_{0,2}^{perish}(\delta_{i_0}) \leq R_{0,1}^*(\delta_{i_0})}_{\text{Persistent Inventory effect}} \quad \underbrace{R_{0,2}^{perish}(\delta_{i_0})}_{\text{Information effect}}
\]
Intuition

Let $R_{0,2}^{\text{perish}}(\delta_{i_0}) = \text{optimal initial replenishment if we allow } R_1 \text{ negative.}$ Can show

$$R_{0,2}^*(\delta_{i_0}) \leq R_{0,2}^{\text{perish}}(\delta_{i_0}) \leq R_{0,1}^*(\delta_{i_0})$$

Persistent Inventory effect Information effect

Persistent Inventory effect

- **Stock less** to reduce possibility of carrying too much inventory into next period.
- Arises from constraint $R_1 \geq 0$.

Adam Mersereau Information-Sensitive Inventory Management 37
Let $R_{0,2}^{\text{perish}}(\delta_{i_0}) = \text{optimal initial replenishment if we allow } R_1 \text{ negative. Can show}$

$$R_{0,2}^*(\delta_{i_0}) \leq R_{0,2}^{\text{perish}}(\delta_{i_0}) \leq R_{0,1}^*(\delta_{i_0})$$

- **Persistent Inventory effect**
 - Stock less to reduce possibility of carrying too much inventory into next period.
 - Arises from constraint $R_1 \geq 0$.

- **Information effect**
 - Stock less to improve knowledge about inventory level.
 - Arises from impact of R_0 on shape of $P_1(\cdot)$.
Does “information effect” always cause manager *stock less*?
Does “information effect” always cause manager stock less?

No. Can choose cost parameters, demand distribution, P_0 to give a counterexample.
Does “information effect” always cause manager stock less?

- **No.** Can choose cost parameters, demand distribution, P_0 to give a counterexample.

- **Usually.** Found $R_{0,2}^*(P_0) \leq R_{0,2}^{perish}(P_0) \leq R_{0,1}^*(P_0)$ for each of 10000 randomly generated problems.
Remaining questions:
- Do effects persist for longer horizons?
- What are the magnitudes of the effects?
- How do effects vary with system parameters?

Would like to numerically compare:
- $R_{0,1}^{\text{noV}}$: Myopic policy ignoring invisible demand
- $R_{0,1}^{\ast}$: True myopic policy
- $R_{0,T}^{\ast}$: Optimal policy (Intractable to compute!)
Exact POMDP:
\[J_t(P_t) = \min_{R_t \geq 0} \{ m(P_t, R_t) + E[J_{t+1}(B(P_t|R_t, S_t))] \} \]

Grid Interpolation Approach (Hauskrecht, 2000):
1. Maintain a finite set (grid) of template distributions.
2. Solve reduced dynamic program among the templates.
3. Approximate values of new beliefs by interpolating among templates.

Notes:
- Requires procedures for interpolation, template-generation.
- Overcomes curse of dimensionality.
- Provides a policy, lower bound on optimal value.
Numerical Results

- 10-period horizon.
- Visible demand: Negative binomial distribution, mean 2.0, variance 3.8.
- Invisible demand: Difference of two Poisson distributions, mean 0, variance 1.2.
- $c = 3$, $p = 9$, $h = 1$, $c_s = c - h = 2$.

<table>
<thead>
<tr>
<th>Policy</th>
<th>Total Cost</th>
<th>Total Ordered</th>
<th>Average Stock</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{0,1}^{noV}$</td>
<td>101.36</td>
<td>20.07</td>
<td>4.59</td>
</tr>
<tr>
<td>$R_{0,1}^{*}$</td>
<td>101.02</td>
<td>19.62</td>
<td>4.42</td>
</tr>
<tr>
<td>A-POMDP</td>
<td>100.69</td>
<td>19.00</td>
<td>4.13</td>
</tr>
</tbody>
</table>
Evolution of BIR

![Graphs showing expected value and standard deviation over time for different strategies: Myopic noV, True myopic, and A-POMDP.](image)

- **Expected Value**
 - Myopic noV
 - True myopic
 - A-POMDP

- **Standard Deviation**
 - Myopic noV
 - True myopic
 - A-POMDP
As Horizon Becomes Longer

Problem Horizon vs. Average Cost

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Myopic noV</th>
<th>True myopic</th>
<th>A−POMDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9.5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>10.5</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>10.5</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>11.5</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>11.5</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>12.5</td>
<td>15</td>
</tr>
<tr>
<td>18</td>
<td>12.5</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
<td>13.5</td>
<td>17</td>
</tr>
</tbody>
</table>

Problem Horizon vs. Average Stock

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Myopic noV</th>
<th>True myopic</th>
<th>A−POMDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3.5</td>
<td>4</td>
<td>4.5</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>4.5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>4.5</td>
<td>5</td>
<td>5.5</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>5.5</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>5.5</td>
<td>6</td>
<td>6.5</td>
</tr>
<tr>
<td>16</td>
<td>6</td>
<td>6.5</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>6.5</td>
<td>7</td>
<td>7.5</td>
</tr>
<tr>
<td>20</td>
<td>7</td>
<td>7.5</td>
<td>8</td>
</tr>
</tbody>
</table>

Adam Mersereau
Information-Sensitive Inventory Management 46
As Invisible Demand Becomes More Variable

![Graphs showing the relationship between Invisible Demand Variance and Average Cost, Average Stock for Myopic noV, True myopic, and A–POMDP.](image)

- **Average Cost**
 - Myopic noV
 - True myopic
 - A–POMDP

- **Average Stock**
 - Myopic noV
 - True myopic
 - A–POMDP
Identified and isolated several effects of record inaccuracy on optimal replenishment
- Short term incentive to stock more to buffer added uncertainty.
- Long term incentive to stock less to rein in future uncertainty.

Approximate POMDP approach to partially observable inventory management
- Orders less, achieves lower cost than myopic policy.
- Effect of record inaccuracy increases with horizon, inaccuracy variance.
- Useful for other assumptions, decisions.
- Impact of scheduled audits on replenishment.
- Characterizing optimal joint audit/replenishment policies.
- Multiple SKUs with substitution.
- Integration of partially observed inventory management, parameter estimation.